

Institute of Mechanical Process Engineering and Mechanics Division Process Machines

Karlsruhe Institute of Technology

Kaiserstraße 12, 76131 Karlsruhe, GERMANY Website: www.mvm.kit.edu

Pore-scale Resolved 3D Simulations of Aqueous Organic Flow Batteries

Amadeus Wolf, Hermann Nirschl

Pore-scale resolved half-cell Model^[1] parameterized with 4-OH-TEMPO

Motivation

Examination of promising, non-rare and non-toxic organic material candidates on the pore-scale for flow battery performance

Results – Structured electrodes^[1]

Identification and visualization of cell limitations such as structure-dependent transport limitations

Research Objective

- 3D numerical simulation of coupled electrolyte flow and electrochemical processes
- Deduction of qualitative and quantitative recommendations for the optimization of flow batteries using novel active materials

Conclusion

- Reproduction of concentration and active surface dependent flow battery characteristics
- SOC dependent optimal Reynolds Number around ~10⁻² regarding mass transport and half-cell potential

Results – Reconstructed microstructure^[1]

- Increasing depletion of active material with reducing flow rate due to insufficient mass transfer
- Decreasing half-cell potential with decreasing SOC and flow rate
- rates with Reynolds numbers of around 10⁻²

Half-cell potential over state of charge (SOC) for different porosities at constant galvanostatic current density of 40 mA cm⁻² (left) and for different charge/discharge rates (right). Concentration is 0.5M TEMPO in 1.5 NaCI. Lines are used for orientation. The simulations assume a constant supply of electrolyte at the inlet.

Microstructure characterization: X-ray computed micro-tomography

Method for the image reconstruction of real porous electrodes

Volume-weighted mean value of TEMPO⁺ concentration normalized to the inlet value along the dimensionless Z-direction (Membrane at Z=0 and current collector at Z=1) for different flow rates (left). Half-cell potential over Reynolds number for different SOC. Concentration is 0.1M TEMPO in 1.0M NaCI and galvanostatic discharge current density is 40 mA cm⁻². The simulations assume a constant supply of electrolyte at the inlet.

Outlook: Generation of representative periodic microstructures

Development of a method for mirroring the porous electrode micro structure

References

^[1]C. Roth, J. Noack, M. Skyllas-Kazacos, Redox Flow Batteries. From Fundamentals to Applications. Weinheim: Wiley-VCH, 2023.

^[2] T. Dobler, B. Radel. "Quasi-Continuous Production and Separation of Lysozyme Crystals on an Integrated Laboratory Plant". In: Crystals 11.6 (2021). issn: 2073-4352. doi:10.3390/cryst11060713.

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 875489.

Contact Amadeus Wolf, M.Sc. Kaiserstraße 12 76131 Karlsruhe, GERMANY Phone: +49 721 608 45089 Email: amadeus.wolf@kit.edu

www.kit.edu

KIT – The Research University in the Helmholtz Association