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1 Introduction  

This report reformulate the contents published in the paper Yu, J., Duquesnoy, M., Liu, C., Franco, 

A.A. (2023), Optimization of the microstructure of carbon felt electrodes by applying the 

lattice Boltzmann method and Bayesian optimizer, Journal of Power Sources, Volume 575, 

233182, ISSN 0378-7753.  

In the previous delieverable reports, we have presented our kinetic Monte Carlo models which 

focus on the explicit molecular level. Among the three mass transfer phenomena, only diffusion 

and migration were taken into account. However, convection also plays a vital role in the RFB 

systems, as the electrolyte flow is constantly pumping through the reaction chamber. Therefore, 

the original goal of this delievrable is to simulate the electrolyte flow inside RFBs and upscale the 

model. 

However, alongside the model development, we notice that the arrangement of fibres, the porosity, 

and the compression ratio of the carbon felt electrode impact significantly on the fluid dynamics of 

the electrolyte flow. Consequently, we end up proposing a complete computational methodology 

to optimise the microstructure of the carbon felt electrode employed in RFBs within this deliverable 

report. 

Drawing upon our practical knowledge, it is evident that poor circulation of the electrolyte flow 

decreases the system efficiency (Figure 1). As such, we fix our optimisation objective to 

quantitatively maximise the electrolyte utilisation rate. This maximisation depends on three 

aspects: the specific surface area, the hydraulic permeability, and the practical reactive volume. 

We introduce the concept of a practical reactive volume to quantify the dead zone where the 

electrolyte flow is too slow to react, thereby leading to the waste of the active surface area. 

https://www.sciencedirect.com/science/article/pii/S0378775323005578
https://www.sciencedirect.com/science/article/pii/S0378775323005578
https://www.sciencedirect.com/science/article/pii/S0378775323005578
https://www.sciencedirect.com/science/article/pii/S0378775323005578
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Figure 1. Schematic showing the three factors required to maximize the electrolyte utilization rate 

in an RFB system. 

By synergistically combining stochastic generation of the electrode microstructure, digital 

compression of the electrode, the Lattice Boltzmann Method, and the Bayesian optimisation 

approach, we establish our computational workflow to predict an optimised set of parameters for 

electrode design. The optimisation algorithm evaluates three microstructure properties at each 

cycle and proposes a new combination of parameters for examination in the next cycle. 

Throughout this workflow, we have tested a total of 240 parameter sets using the Bayesian 

Optimiser. 

The optimisation results demonstrate that a high compression ratio with thick, aligned fibres 

favours enhanced electrode performance. In the case of a highly compressed felt electrode, the 

pore size generally decreases while a small number of large-sized pores persist in the structure, 

thereby facilitating convection in the electrolyte flow. Contrary to conventional thought, which 

suggests that fine fibres with low porosity yield a larger specific surface area, our simulations 

reveal that thick, aligned fibres with a high compression ratio provide a superior balance between 

hydraulic permeability, specific surface area, and practical reactive volume. 

Considering the heavy computational cost of coupling the lattice Boltzmann model with the kinetic 

Monte Carlo model, the properties obtained from our optimised structure and an unfavourable 

structure are incorporated into a homogeneous model to simulate electrochemical performance 
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during charge and discharge. In this simulation, the optimised case demonstrates a lower 

overpotential and a better reversible capacity compared to the non-optimised one. 

 

2 Workflow and modelling methodology 

2.1 Optimization target parameters  

We target a combination of related parameters to be optimized, including the fibre diameter, the 

density of the felt, fibre orientation, amount of in-plane fibre, and compression ratio of the felt 

electrode. The range of each parameter is listed in Table 1.  

Table 1. Parameter range of the optimization workflow 

Parameter Min value Max value 

Fiber diameter (µm) 4.70 22.3 

Density (g cm-3) 0.08 0.15 

Fiber orientation 1.0 9.0 

Amount of through-plane fibre (%) 0.5 10 

Compression ratio (%) 1.0 40.0 

Considering the usage in industrial manufacturing, we choose bulk density instead of porosity in 

our study as one of the optimization parameters. The respective porosity ranges from 0.89 to 0.94 

without compression. The value of fibre orientation controls the stochasticity of the fibre. The fibre 

is perfectly aligned in the direction of the electrolyte flow (x-axis) with a value of 10 and the 

orientation of the fibre is randomly assigned the value of 0. To respect the manufacturing process 

of the felt electrode, the value of the fibre orientation is chosen to be in the range from 1 to 9 to 

control the randomness of the fibre orientation. Furthermore, since a small amount of through-

plane fibre is required for fabricating the stitched felt electrode, a certain amount of through-plane 

fibre, from 0.5% to 10%, is also considered. The orientation of the through-plane fibres is restricted 

to the z-axis direction with limited stochasticity. The compression considered in this study is the 

path-controlled surface pressure along the z-axis. According to Banerjee et al., the permeability 

of the felt electrode decreases sharply after a 40% compression. Thus, we set 40% as the 

maximum compression ratio. [1] 
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2.2 The optimization workflow and the microstructure generation 

The schematic of the optimization workflow used in this study is shown in Figure 1. For each set 

of parameters, the electrode is first generated and compressed in GeoDict® based on the related 

parameter set. Since the compression can change the size of the electrode, the optimization 

workflow is made consistent by setting the initial volume of the electrode to 1000 × 220 × 350 µ𝑚3, 

and cutting into the same volume of 1000 × 200 × 200 µ𝑚3  after the compression. Then, we 

obtain our first optimization property from the compressed microstructure, i.e., the specific surface 

area, SSA.  

In this study, the SSA is estimated according to the determination of the four Minkowski measures, 

i.e., volume, surface area, integral of the mean curvature, integral of total curvature, from the 

voxelized images in the MatDict module of GeoDict® [2,3]. Compared to the SSA calculated based 

on the voxel mesh, the Minkowski measurement is more accurate and realistic due to the 

reconstruction of the actual geometry.  

The obtained microstructure is then injected into the LBM model to calculate the fluid velocity 

distribution and the hydraulic permeability, k. The last optimization property, the practical reactive 

volume, is calculated based on the post-analysis of the LBM results. BO takes the properties 

obtained from each iteration and predicts the next optimized parameter set for the following 

iteration.  

 

Figure 1. Schematic for the computational workflow for the optimization of the carbon felt electrode 

microstructure. 
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2.3 The LBM model 

The approach utilized in this delieverable report follows the well-established LBM. Within this LBM 

framework, the intricate interplay between electrolyte and electrode microstructures finds 

representation upon a cubic lattice. The fluid dynamics of the electrolyte are transcribed through 

the displacements of discrete fluid particles, constrained to predefined directions.[4] To formulate 

our LBM model, we opted for a three-dimensional cubic lattice employing 19 fixed velocity vectors 

(D3Q19), coupled with the venerable Bahtnagar-Gross-Krook (BGK) collision operator.  

According to the general idea of LBM, the displacement of each electrolyte particle can be 

described as follows,  

𝑓𝑖(𝑥 + 𝑒𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑖(𝑥, 𝑡) = 𝛺𝑖 + 𝐹𝑏 , 𝑖 = 0,1,2, … ,18 (1) 

where 𝑓𝑖 is the particle distribution function, and 𝑒𝑖 is the particle velocity at lattice location 𝑥 at 

time 𝑡. The subscript 𝑖 represents the velocity vector 𝑖 around the grid unit, with 19 directions in 

our LBM approach. 𝛺𝑖 is the collision operator at lattice node 𝑥 at time 𝑡, which together with the 

particle distribution function, 𝑓𝑖, holds the system in Maxwellian equilibrium.  

In the present work, a classic Bahtnagar-Gross-Krook (BGK) operator is chosen due to its 

simplicity and the low speed of electrolyte flow inside RFB system, which is expressed as:  

𝛺𝑖
𝐵𝐺𝐾 =

−1

𝜏
[𝑓𝑖(𝑥, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑥, 𝑡)], (2) 

where 𝜏 is the relaxation time related to the kinematic viscosity of the electrolyte v, which is 

calculated through 𝑣 = 𝑐𝑠
2 (𝜏 −

1

2
).[5] 𝑐𝑠 is the lattice speed sound defined by 𝑐𝑠 =

𝛿𝑡

𝛿𝑥

√3
, where 𝛿𝑡 

and 𝛿𝑥 are the discrete-time step and length step, respectively.  

The 𝑓𝑖
(𝑒𝑞)

 is the particle distribution function at the equilibrium state, which can be obtained 

through, 

𝑓𝑖
(𝑒𝑞)

(𝑥, 𝑡) = 𝜔𝑖𝜌 (1 +
𝑒𝑖 ∙ 𝑈

𝑐𝑠
2 +

(𝑒𝑖 ∙ 𝑈)2

2𝑐𝑠
4 −

𝑈2

2𝑐𝑠
2) , (3) 

where 𝜔𝑖 is the weighting factor for velocity vector 𝑖, where 𝑤𝑖 =
1

3
 for 𝑖 = 0, 𝑤𝑖 =

1

18
 for 𝑖 = 1, … ,6 

and 𝑤𝑖 = 1 36⁄  for 𝑖 = 7, … ,18. 𝜌 is the density of the fluid. 𝑈 is the dynamic fluid velocity. 𝑒𝑖 is the 

discrete velocity defined as,  

[𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, 𝑒8, 𝑒9, 𝑒10, 𝑒11, 𝑒12, 𝑒13, 𝑒14, 𝑒15, 𝑒16, 𝑒17, 𝑒18] = 𝑐

[
0 1 −1 0 0 0 0 1 −1 −1 1 −1 1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 −1 1 −1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 −1 1 1 −1

] (4)
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The density and velocity of the fluid are obtained from the following discrete distribution functions: 

𝜌(𝑥, 𝑡) = ∑ 𝑓𝑖(𝑥, 𝑡)

𝑛

𝑖=0

 (5) 

𝜌(𝑥, 𝑡)𝑈(𝑥, 𝑡) = ∑ 𝑒𝑖𝑓𝑖(𝑥, 𝑡).

𝑛

𝑖=0

 (6) 

The system is exposed to a constant pressure difference, P, between the inlet (x = 0) and the 

outlet (x = 1000) in our LBM model. The pressure difference is implemented as an external force, 

𝐹𝑏, whose impact is added to the velocity of the fluid as:  

𝑈𝑒𝑞(𝑥, 𝑡) = 𝑈(𝑥, 𝑡) +
𝜏𝐹𝑏

𝜌
. (7) 

We assume the carbon felt electrode is filled with electrolyte with a velocity of 0 at the beginning 

of the LBM simulation. The velocity distribution of the electrolyte flow reached a steady state under 

the constant pressure difference along the x-axis direction. The hydraulic permeability, k, is 

calculated from 𝑘 =
𝜇𝑈̅

𝑃
, based on the results obtained from the LBM model, where 𝑈̅  is the 

averaged flow fluid velocity, and 𝜇 is the dynamic viscosity of the electrolyte.  

As demonstrated by Kok et al., a significant portion of the reactive surface might be starved from 

the reactant due to the heterogeneity of the fibrous electrode.[6] Therefore, we introduce another 

property, i.e., the practical reactive volume, aside from the specific surface area and hydraulic 

permeability, to better evaluate the mass transport in the system. The practical reactive volume is 

estimated based on the Peclet number. The Peclet number is calculated for each mesh unit 

through the characteristic length, L, the velocity distribution obtained from LBM, Ui, and the 

diffusion coefficient for the chosen species, D, as shown in Eq. 5.9.  

𝑃𝑒 =
𝐿𝑈𝑖

𝐷
 (9) 

In this study, we chose 𝐷 = 5.5 × 10−6 cm2·s-1.[7] Convection is considered not to hinder the 

diffusion of the active species once 𝑃𝑒 ≫ 1.[8] Therefore, we set the threshold of 𝑃𝑒 = 100. For 

each mesh unit, the convection is considered not enough if the Peclet number is lower than 100. 

The practical reactive volume is then calculated through the ratio between the sum of unit volume 

where 𝑃𝑒 ≥ 100 and the total reactive volume (without solid fiber), as shown: 

𝜂𝑃𝑅𝑉 =
𝑉𝑃𝑒≥100

𝑉𝑡𝑜𝑡
 (10) 
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The LBM model is coded in C++ based on the Palabos package [9,10] and previous work by 

Santos et al.[11] The post-processing of the resulting data was carried out in Paraview [12] and 

Python3.7 [13].  

 

2.4 Bayesian optimizer (BO) 

BO was applied to optimize the specific surface area, hydraulic permeability, and practical reactive 

volume simultaneously. BO combines these properties to reflect a multi-objective optimization 

problem through an objective function (denoted 𝐶𝑓) to be minimized:  

𝐶𝑓 = 𝑚𝑖𝑛 (
1

3
(1 − 𝑆𝑆𝐴)2 +

1

3
(1 − 𝑘) +

1

3
(1 − 𝜂𝑃𝑅𝑉))                               (11)  

Such a function is dependent on the input parameters and needs to be approximated by the BO 

framework to target the most suitable candidate of parameters to minimize 𝐶𝑓. We assign the 

same weight for each property to balance their importance in the optimizer. In each iteration of the 

BO algorithm, a posterior distribution 𝐶𝑓|𝐷 is calculated by probabilistic modelling, where D is the 

set of previous data that have been proposed. Then the algorithm proposes a new candidate of 

input parameters chosen by an acquisition function. Such a function balances the exploration of 

identifying value combinations far from prior parameters and the exploitation of prior parameter 

combinations to pinpoint nearby the minima. In our study, we used a Gaussian process regression 

to approximate 𝐶𝑓, updated at each iteration to return the best combination of input parameters 

providing a good balance between the optimal properties.  

As we intend to maximize the specific surface area, hydraulic permeability, and practical reactive 

volume, we built the objective function 𝐶𝑓 with the following purposes: 

a) Proper weights given for each property. 

b) Tackle the different orders of magnitude.  

To do so, we evaluated a scalarization method over 𝐶𝑓 by incorporating a scalar fitness function, 

allowing each property tobe fit into [0, 1] for the evaluation of the 𝐶𝑓. More precisely, this strategy 

addresses any bias that could appear when maximizing all three properties regarding the existing 

relationships. Each scaled property X was included in 𝐶𝑓  as (1-X) to be minimized when the 

associated property needs to be maximized. As a consequence, 𝐶𝑓 respects an equal-weighted 

power function: 

𝐗∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 (𝐶𝑓(𝑥)) (12) 



 

 

SONAR Deliverable Report 

Page 11 of 21 

Regarding each iteration of the BO framework, the evaluation of 𝐶𝑓  denotes a non-linear 

combination of electrode properties calculated from the previous steps, reducing the number of 

parameters sets to test and giving an optimal balance of the properties, as mentioned earlier.  

3 Results and discussion 

Our algorithm workflow tested 240 parameter sets in total. The total convergence of the workflow 

is plotted in Figure 1 (a). and Figure 1 (b) presents the convergence of the hydraulic permeability 

and the specific surface area. It is observed that the minimum value of 𝐶𝑓  appears after 55 

iterations. The SSA reaches the maximum after 35 iterations, and the maximum permeability is 

reached after 222 iterations.  

 

Figure 1. Convergence curve of the BO algorithm. (a) The minima of 𝑪𝒇 after each iteration. (b) The 

maxima of the hydraulic permeability and the SSA after each iteration. 

The distribution of each property obtained from our workflow is presented in Figure 2 (a), (b), and 

(c). Each data point represents an obtained value from the workflow. The colour bar is assigned 

based on the value of the optimization function, 𝐶𝑓 . Figure 2 (a) illustrates the decreasing 

correlation trend between the specific surface area and the practical reactive volume. The sharp 

decrease of permeability when the specific surface area increases is illustrated in Figure 2 (b). 

Figure 2 (c) presents the increasing correlation between the practical reactive volume and 

hydraulic permeability.  
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Figure 2. Distribution of the three optimization properties and the three reference cases. (a) The 

distribution of SSA versus PRV. (b) The distribution of SSA versus Hydraulic permeability. (c) The 

distribution of PRV Vs. Hydraulic permeability. 

The ideal case with an optimized value of 𝐶𝑓 in this study needs to maximize all three properties 

in Figure 2. As can be seen in Figure 2 (a), (b), and (c), the colour of the data points gradually 

becomes yellow from left to right and from bottom to up. Moreover, the predicted optimal case is 

located in the top half and the right-hand side of all three sub-figures. The cluster of data points in 

the hydraulic permeability range of (280 − 420 × 10−12 m2) demonstrates the functionality of the 

optimizer. After the appearance of the first optimized case, the optimizer starts to extrapolate the 

parameter sets close by to identify the next optimized parameter set. 

Three reference values of SSA and hydraulic permeability of the commercialized graphite felt 

electrodes are also included in Figure 2b), which are compared with our predicted optimal 

case.[14] The SSA of the three reference cases was extracted from the tomography results by 

calculating the cubic voxel facets of the solid-liquid interphase. Compared to the SSA calculated 

by Minkowski measures in our approach, the obtained reference results are relatively higher than 

the actual value. We also estimated the apparent SSA and the SSA calculated from the sum of 

the voxel facets for each microstructure generated in our workflow. The apparent SSA is 

calculated through the cylinder surface area, considering that the fibrous material is one fibre only. 

Figure 3 compares the SSA obtained from the three different methods. The colour bar of the dots 

is assigned based on the density of the felt electrode. Figure 3 (a) presents the apparent SSA and 

the SSA obtained from the Minkowski measures. The apparent SSA is considered a reference 

value, and the Minkowski value demonstrates a linear correlation with the apparent SSA, except 
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for several points. The apparent SSA does not consider the intersection of the fibres and is 

calculated based on the compressed structure without the sample size unification, which could 

explain the appearance of the deviated points. On the other hand, The SSA calculated by the sum 

of the voxel facet presented in Figure 3 (b) demonstrates a much higher value than the apparent 

SSA for all the data points. Moreover, no clear trend between these two methods can be 

determined due to the multi-parameters required for the structure generation.  

 

Figure 3. Comparison of SSA calculated from voxel facet surface and the Minkowski measures. 

Furthermore, electrode compression, leading to decreased hydraulic permeability and increased 

SSA, is not considered for the three reference cases. Therefore, the prediction of the optimal case 

in our study reaches a higher permeability with a similar SSA for the three reference cases.  

Table 1 presents the predicted parameter set of the optimal case, and the microstructure of the 

optimal case is shown in Figure 4. Compared to the optimization case proposed by Wan et al. 

[14], our optimal case favours a thick fibre with a high compression rate instead of a thin fibre and 

high porosity. However, the porosity of our optimal case is 0.91, which is in agreement with the 

optimized case of Wan et al., which brings our attention to the impact of compression on the pore 

network of the electrode.  
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Figure 4. Electrode microstructure of the optimal case. (a) Before compression. (b) After 

compression. 

Table 1. Parameter sets of the best case. 

Parameter 
Optimal 

case 

Fiber diameter (µm) 22.3 

Density (g cm-3) 0.08 

Fiber orientation 8.55 

Amount of through-plane fibre (%) 2.30 

Compression ratio (%) 32.6 

𝐶𝑓 0.188 

Figure 4 (b) shows that the electrode structure adapted in the optimization function only contains 

a small number of fibres and pores due to volume limitation, which is not enough for conducting a 

complete study of the pores. Therefore, we reconstructed a more extensive sample by taking the 

proposed parameter set, as shown in Figure 5 (c).  

Figure 5 (a) and (b) illustrate the identification of pores by the Watershed Algorithm before and 

after compression. Each identified pore is illustrated in one specific colour to facilitate the 
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visualization. The compression decreases the pore size and increases the pore network. Figure 5 

(d) presents the histogram of the pore size distribution based on the pore diameters. Compression 

reduces the pore size, leading to a shift of the peak to the left. Moreover, the electrode structure 

demonstrates a heterogeneous porosity distribution along the compression direction. (Figure 5 

(e)).  

The porosity of the electrode microstructure near the compressed plane decreases more than the 

bulk level, while the rest of the microstructure does not demonstrate a significant change above 

the bulk level. This heterogeneous porosity distribution facilitates the convection of the electrolyte 

while offering a significant number of reaction sites.[15,16] As presented in Figure 5 (d), a small 

fraction of the large-size pores with a diameter of around 200 µm remains in the system, facilitating 

the electrolyte flow's mass transport process.[16]  

Figure 5 (f) presents the Krumbein sphericity of the pores before and after the compression. The 

Krumbein sphericity, Pk, is calculated based on the three principal axes, a, b, and c, of the ellipsoid 

fitted to each pore through: 𝑃𝑘 = √
𝑏𝑐

𝑎2

3
. The closer the value of Pk is to 1, the shape of the pore is 

closer to a sphere. On the other hand, the pore shape is flatter or more prolate when Pk is closer 

to 0. The amount of sphere-shaped pores increases after the compression, because the large 

pores are separated into smaller pieces after compression. Meanwhile, the amount of prolate 

pores also increases, as the width of the pores are generally reduced due to the compression.  

Compared to the optimal case discussed previously, the microstructure of the non-ideal case is 

generated with thin fibre, high bulk density, and random in-plane fibre orientations. The total 

porosity is 0.87 after compression, which leads to weak electrolyte fluidity and low practical 

reactive volume.  

To further validate our optimization results, an electrochemical model is built in COMSOL® to 

simulate the charging and discharging process of V3+/ V2+. In this model, a cardon felt electrode 

with the size of 5 cm ×  5 cm ×  2 mm is depicted as a homogenized 2D plane. The SSA, 

permeability, and porosity of the predicted optimal case and the non-ideal case are implemented 

in the homogeneous model and shown in Table 2. We assume the same pressure is applied to 

both systems. The modelling details can be found in the Supporting Information. Four current 

densities are applied to the electrode: 5 mA cm-2, 10 mA cm-2, 20 mA cm-2, and 40 mA cm-2. 
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Figure 5. (a) Identification of pores before compression. (b) Identification of the pores after 

compression. (c) The electrode structure generated from the parameter set of the optimal case in a 

more significant volume (𝟑𝟎𝟎𝟎 × 𝟓𝟓𝟎 × 𝟖𝟕𝟓 µ𝒎𝟑). (d) Pore size distribution before and after 

compression. (e) Pore size distribution along the compression direction (z-axis) before and after 

compression. (f) Krumbein sphericity of the electrode structure before and after compression. 
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Figure 6. a) Discharge profiles of V3+ with different current densities. Solid lines represent the 

optimal electrode structure, and the dashed lines represent the non-ideal case. b) Charge profiles of 

V2+ with different current densities. Solid lines represent the optimal electrode structure, and the 

dashed lines represent the non-ideal case. c)- f) Concentration distribution in the electrode 2D 

plane. 
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The obtained charge and discharge profiles are shown in Figure 8 a) and b). Results show that 

the optimal electrode has better performance than the non-ideal electrode in charge and discharge 

by showing higher reversible capacity. We notice that the two curves always intersect for each 

applied current density. Before the intersection, the optimal electrode always shows a higher 

absolute overpotential value due to the relatively low SSA, leading to a high faradaic current 

density on the fibrous surface. However, the curves of the optimal electrode still extend longer 

than the non-ideal electrode after the intersection. As the optimal electrode is equipped with thick 

fibre and a high compression ratio, its structure favours the electrolyte convection, leading to the 

better transportation of the active species. Figure 8 c), d), e), and f) show the concentration 

distribution of V2+ and V3+ at the end of discharging process with the current density of 40 mA cm-

2. As can be seen, the optimal electrode shows a much lower concentration gradient than the non-

ideal electrode, implying that efficient transportation promotes a thorough electrochemical 

reaction. 

Table 2 Characteristics of the optimal case and non-ideal case in the homogeneous model 

 Optimal case Non-ideal case 

Porosity 0.91 0.87 

SSA (m2 m-3) 21754 45545 

Velocity of the flow (mm s-1) 1.11 0.13 

 

4 Conclusion  

In this , we present a computational workflow to optimize the microstructure of the carbon felt 

electrode. Such an optimization aims to maximize the electrolyte utilization rate by maximizing 

three properties, including the specific surface area, the hydraulic permeability, and the practical 

reactive volume. We extract the properties of electrode microstructure generated stochastically by 

GeoDict® and the LBM model. The latter is applied to investigate the fluid dynamic properties of 

electrolytes passing through felt electrodes and quantify the 'starved zone' by calculating the 

Peclet number. The BO predicts a newly optimized parameter set based on the optimization 

function of each iteration. Our approach also offers a method to investigate the mass transport 

phenomenon separately from the electrochemistry reactions.  

This study is industry-oriented and offers some practical insights for better-felt electrode designs. 

The optimization algorithm results show that the felt electrode with fine fibres, high density, and 



 

 

SONAR Deliverable Report 

Page 19 of 21 

high compression ratio achieves a vast surface area, causing poor electrolyte circulation and 

leading to low hydraulic permeability and low practical reactive volume. On the contrary, felt 

electrode with thick fibres, low density, and low compression rate facilitates the convection of the 

electrolyte flow and decreases the specific surface area. Besides, among the five input 

parameters, the amount of in-plane fibre demonstrates a weak influence on the value of 𝐶𝑓. 

The predicted optimal case is generated with thick fibre diameters, low density, aligned through-

plane fibre, and a high compression rate, which reaches a higher hydraulic permeability than the 

commercialized reference cases and similar specific surface area. In addition, the impact of the 

compression on the geometrical change is thoroughly investigated. The felt electrode 

demonstrated heterogeneity regarding the pore size distribution along the compression direction. 

The huge fraction of small-sized pores offers a vast specific surface area, while the small fraction 

of large-sized pores facilitates the mass transport of the electrolyte flow.  

We also tested the electrochemical behaviour of our predicted optimal electrode microstructure 

by applying a homogeneous model. The result further verified that pursuing high SSA does not 

always promote better cell behaviour. Overly fined fibre can reduce the electrode velocity, 

weakening the transport process, which causes an insufficient electrochemical reaction and high 

overpotentials, increasing the non-reversible capacity. 

Among the discussion of the optimization results, we also briefly discussed the calculation of the 

specific surface area using two different approaches, the sum of the voxel surface area and the 

Minkowski measures. Although it is not the main topic of this study, we believe it is essential to 

point out the inaccuracy of the voxel facets calculation.  

As there is an ever-increasing demand for developing large-scale energy storage facilities, we are 

convinced that the computational optimization workflow presented in this study offers a practical 

methodology for future felt electrode design and paves the way for developing reliable redox flow 

batteries. We expect the industry to benefit from our findings and hope to report experimental 

results in the future. 
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